3,335 research outputs found

    Host Plant Adaptation in Drosophila mettleri Populations

    Get PDF
    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts

    The 'At-risk mental state' for psychosis in adolescents : clinical presentation, transition and remission.

    Get PDF
    Despite increased efforts over the last decade to prospectively identify individuals at ultra-high risk of developing a psychotic illness, limited attention has been specifically directed towards adolescent populations (<18 years). In order to evaluate how those under 18 fulfilling the operationalised criteria for an At-Risk Mental State (ARMS) present and fare over time, we conducted an observational study. Participants (N = 30) generally reported a high degree of functional disability and frequent and distressing perceptual disturbance, mainly in the form of auditory hallucinations. Seventy percent (21/30) were found to fulfil the criteria for a co-morbid ICD-10 listed mental health disorder, with mood (affective; 13/30) disorders being most prevalent. Overall transition rates to psychosis were low at 24 months follow-up (2/28; 7.1 %) whilst many participants demonstrated a significant reduction in psychotic-like symptoms. The generalisation of these findings may be limited due to the small sample size and require replication in a larger sample

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    Dipole source analysis of auditory P300 response in depressive and anxiety disorders

    Get PDF
    This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies

    A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring

    Get PDF
    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables has rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as ‘‘Bison Pool’’ in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community.Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions

    Measurement of the Relative Branching Fraction of Υ(4S)\Upsilon(4S) to Charged and Neutral B-Meson Pairs

    Full text link
    We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to determine the production ratio of charged to neutral B-meson pairs produced at the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ -> J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) -> B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- = 0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty apply to all exclusive B-meson branching fractions measured at the Y(4S) resonance.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    A systematic review of outcomes reported inpediatric perioperative research: A report from the Pediatric Perioperative Outcomes Group

    Get PDF
    The Pediatric Perioperative Outcomes Group (PPOG) is an international collaborative of clinical investigators and clinicians within the subspecialty of pediatric anesthesiology and perioperative care which aims to use COMET (Core Outcomes Measures in Effectiveness Trials) methodology to develop core outcome sets for infants, children, and young people that are tailored to the priorities of the pediatric surgical population. Focusing on four age‐dependent patient subpopulations determined a priori for core outcome set development: (a) neonates and former preterm infants (up to 60 weeks postmenstrual age); (b) infants (>60 weeks postmenstrual age—1‐13‐<18 years), we conducted a systematic review of outcomes reported in perioperative studies that include participants within age‐dependent pediatric subpopulations. Our review of pediatric perioperative controlled trials published from 2008 to 2018 identified 724 articles reporting 3192 outcome measures. The proportion of published trials and the most frequently reported outcomes varied across predetermined age‐groups. Outcomes related to patient comfort, particularly pain and analgesic requirement, were the most frequent domain for infants, children, and adolescents. Clinical indicators, particularly cardiorespiratory or medication‐related adverse events, were the most common outcomes for neonates and infants <60 weeks and were the second most frequent domain at all other ages. Neonates and infants <60 weeks of age were significantly under‐represented in perioperative trials. Patient‐centered outcomes, healthcare utilization, and bleeding/transfusion‐related outcomes were less often reported. In most studies, outcomes were measured in the immediate perioperative period, with the duration often restricted to the postanesthesia care unit or the first 24 postoperative hours. The outcomes identified with this systematic review will be combined with patient‐centered outcomes identified through a subsequent stakeholder engagement study to arrive at a core outcome set for each age‐specific group

    First Observation of the Decays B0Dppˉπ+B^{0}\to D^{*-}p\bar{p}\pi^{+} and B^{0}\to D^{*-}p\bar{n}$

    Full text link
    We report the first observation of exclusive decays of the type B to D^* N anti-N X, where N is a nucleon. Using a sample of 9.7 times 10^{6} B-Bbar pairs collected with the CLEO detector operating at the Cornell Electron Storage Ring, we measure the branching fractions B(B^0 \to D^{*-} proton antiproton \pi^+) = ({6.5}^{+1.3}_{-1.2} +- 1.0) \times 10^{-4} and B(B^0 \to D^{*-} proton antineutron) = ({14.5}^{+3.4}_{-3.0} +- 2.7) times 10^{-4}. Antineutrons are identified by their annihilation in the CsI electromagnetic calorimeter.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of the Decays B0 --> D(*)+D(*)-

    Full text link
    The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7 million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4 and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the first angular analysis of the B0 --> D*+D*- decay and determine that the CP-even fraction of the final state is greater than 0.11 at 90% CL. Future measurements of the time dependence of these decays may be useful for the investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
    corecore